
MCAT Instltute

Progress Report
94-10

NASA-CR-1963q7

High Speed Civil Transport:

_

Sonic Boom Softening

and

Aerodynamic Optimization

Samson Cheung

UPS3D

OVERFLOW

UPS3D

July 1994 NCC2-617

MCAT Institute

3933 Blue Gum Drive

San Jose, CA 95127

Sonic Boom Softening and Aerodynamic

Optimization

Samson Cheung

INTRODUCTION

Currently, this research effort is concentrated on a single theme of sharpening the tools for

High Speed Commercial Transport (HSCT) design. Three research topics are focused:

near-field Computational Fluid Dynamic (CFD) calculation and sonic boom softening of

the Boeing Reference-H design, improvement of sonic boom extrapolation, and aerody-
namic design on parallel computers.

In order to design and study a complex aircraft, a relatively fast CFD technique has to be

developed for optimization environment. Coupling a fast space-marching code with a

time-iterative code with overset grids can take the advantage of the speed of the marching

code on the fuselage/wing and handle the complex grid near the wing/nacelle region at the
same time.

A very efficient wave propagation code for mid-field sonic boom prediction has been

developed based on the method of characteristics. This code solves the Euler equations in

1.2 minutes on Cray-YMP; whereas, the axisymmetric CFD method used in 1990 takes 40

minutes on the same computer.

In today's computing environment, large computation intensive problems, like CFD calcu-

lations, can now be done efficiently on parallel machines. Such computations may become

standard for aerodynamic research and design in the future. In the present research, a non-

linear optimization routine for HSCT design has been developed for a network based par-

allel computer system in which a cluster of engineering workstations serves as a virtual

parallel machine.

Sonic Boom and Performance Study of Reference-H

This research effort has concentrated on low-boom HSCT concepts for the past four years.

Even though a new proposed route structure, incorporating supersonic corridors over land

and water, has relaxed sonic boom constraints somewhat, they are still an issue. The

objective of this study is twofold. First is to exercise the methodology of combining two

different CFD codes to solve the near-field solution of a realistic HSCT configuration in an
efficient and accurate manner. Second is to reduce the sonic boom of a the Reference-H

performance configuration without impacting aerodynamic performance. The basic com-

ponents of Reference-H are a fuselage, a pair of swept wings, and four nacelles.

Sonic Boom Softening and Aerodynamic Optimization August 4, 1994 !

Reference-H Near-Field Study

The CFD codes used in this study are the UPS3D code and the OVERFLOW code. The

former is an efficient space-marching code. However, it fails in the regions of subsonic

flow, especially in the region of the wing/nacelle integration. The latter is a time-iterative

code with the Chimera overset grid concept, which makes the code more suitable for solv-

ing the region of wing/nacelle integration. In this study, only inviscid flow is considered.

The figure below summarizes the results of a near-field calculation.

Reference H__
UPS/OVERFLOW Interface

Pressure

Mach 2.4

ct - 4.5 degrees

gBc 94/2

0.20 0.94 1.67 2.40 3.14

Lo'J_r I!_,_ fiat - m

sensitive _"
"_ materials --

i

I_po= Ilutrfae.Q

The flow conditions for the near-field solution above are a Mach number 2.4 and angle of

attack 4.5 degrees. Wind-tunnel data of the Reference-H compares well the results of the

CFD analysis. These results show that the flow turns significantly over the outer nacelle

compared with the flow over the inner nacelle which indicates that nacelle orientation can

impact the aerodynamic performance of the configuration.

Sonic Boom Softening

The sonic boom signature of the Reference-H configuration is also obtained. This calcula-

tion shows that the sonic boom is an N-wave of 104PLdB with a 2.5psf bow shock on the

ground. Details of the sonic boom prediction technique can be found in Ref. 1. Sonic

boom softening of performance aircraft is very different from that of low-boom aircraft

since cruise Mach number and lift are higher. Therefore, the technique developed previ-

ously can not be directly applied to the Reference-H configuration. However, changing the

second derivative of the equivalent area distribution can reduce the PLdB to 102. This

change in the area is so small that the aerodynamic performance remains basically unal-

tered according to the CFD calculations. The results of this study were presented in the 4th

Sonic Boom Workshop. 2

An on-going communication between sonic boom analysis personnel and aircraft design

personnel is essential to effectively approach the task of sonic boom softening on perfor-

mance aircraft. A team consisting the principal investigator of this effort, design personnel

from Boeing and NASA Langley has been formed to achieve this goal.

Supersonic Civil Airplane Study and Design August 4, 1994 2

Sonic Boom Mid-Field Extrapolation (WPSYM)

In the beginning of 90's, sonic boom extrapolation techniques still relied on the linear the-

ory developed in the 60's since the nonlinear techniques were computationally expensive.

A better sonic boom extrapolation technique was needed to accurately and efficiently

model sonic boom extrapolation for HSCT design. Therefore, the objective of this study is

the development of an efficient and accurate higher-order computational method, solving

the Euler equations, for supersonic aero-acoustic wave propagation.

An axisymmetric wave propagation code (WPSYM) has been developed for mid-field

sonic boom extrapolation. This propagation code has been demonstrated as an efficient

and accurate tool over previous CFD methods 1 on a generic wing-body configuration. The

figure below shows the 3-D near-field solution obtained with the UPS3D code; the result is

Sonic Boom

Propagation

Generic Delta-Wing Body

.02

.01

0
APa'0_

-.01

-.02

-.03

Near-field Solution

•" i Viscous 3 D Parttbollzed

(UPS30 Code - _0 mini

. :i'_,:_ "_.:" ; Extrapolated Solutions

¢• Invtscid Axlsymmetri¢
"'/_ PNS [UPS3D code ~ 40 rain|

2.\I\
SOnic Boom :'_L = 3,' _,_ _ H/L=3.'

• o=,, "_ 1 :
PN$ Extrapolation _ ; M[h = 2.7

..... VVP $YM Extrapolation O_1_.

0.0 0.5 1.0 1.5 2.6
AX/IL

then interfaced to two axisymmetric sonic boom extrapolation codes, namely, the axisym-

metric version of UPS3D and the recent wave propagation code (WPSYM). The former

takes 40 minutes on Cray-YMP, and the latter takes 1.2 minutes on the same machine. The

x-y plot in the figure compares the two numerical extrapolation results to wind-tunnel

data. The result has been shown in NASA Technical Highlight and the methodology has

been presented in the 4th Annual Sonic Boom Workshop at NASA Langley in June 1994. 2

Optimizer on PVM (/IOWA)

Moving to the world of parallel computing, the aerospace industry needs a numeric opti-

mization tool in the parallel environment. One of the promising parallel computing con-

cepts is network-based distributed computing. The Parallel Virtual Machine (PVM) is a

software package that allows a heterogeneous network of parallel and serial computers to

appear as a single concurrent computational resource. PVM allows users to link up engi-

neering workstations to work as a single distributed-memory (parallel) machine. Merritt

Supersonic Civil Airplane Study and Design August 4, 1994 3

Smith of NASA Ames Research Center and the Principle Investigator for this research

compiled a PVM manual for beginning users. A copy of the manual is attached as Appen-

dix A to this report.

A parallel optimizer based on nonlinear Quasi-Newton method has been developed and

coupled with an efficient CFD code for basic aerodynamic design and study. This opti-

mizer is called/IOWA (parallel Optimizer With Aerodynamics). The figure below is a

demonstration of/IOWA. A Boeing arrow wing/body configuration is chosen in this

2,0'

1.5'

1.0'

0.5'

o.8

U-Velocity

Original

Optimized

-''''''''-....*-"°

Original Fuselage

Optimized Fuselage

26 36 4. s6 66 7o

Boeing

Arrow Wing / Body

Mach 2.1

Angle of Attack 0

Convergence History

Iterations

0 2 4 s

study. The fuselage radius is changed so that the wave drag is minimized. The parallel

CFD optimization process takes 24 wall-clock hours on 4 SGI workstations to reduce the

wave drag by 6.5%. The optimized result is a "coke bottle" shaped fuselage, as expected

by supersonic area rule. The convergence history of the optimization process is also

shown in the figure.

Oblique All-Wing (OAW): CFD Support

The OAW design team has asked for CFD support on the latest configuration OAW-3 from
which a wind-tunnel model has been built and tested at Ames in June 1994. The figure

below shows the chimera grid topology on the OAW-3 with an upper fin. The design team
I}pp_ F_n

Supersonic Civil Airplane Study and Design August 4, 1994 4

plans to compare the current CFD results with the results from pressure sensitive paint

(PSP). CFD calculations have to be done prior to the wind-tunnel test because the color

map from CFD result is need for PSP calibration.

SUMMARY

An improvement in sonic boom extrapolation techniques has been the desire of aerospace

designers for years. This is because the linear acoustic theory developed in the 60's is in

capable of predicting the nonlinear phenomenon of shock wave propagation. On the other

hand, CFD techniques are too computationally expensive to employ on sonic boom prob-

lems. Therefore, this research focused on the development of a fast and accurate sonic

boom extrapolation method that solves the Euler equations for axisymmetric flow. This

new technique has brought the sonic boom extrapolation techniques up to the standards of

the 90's.

Parallel computing is a fast growing subject in the field of computer science because of

their promising speed. A new optimizer (IIOWA) for the parallel computing environment

has been developed and tested for aerodynamic drag minimization. This is a promising

method for CFD optimization making use of the computational resources of workstations,

which unlike supercomputers can spend most of their time idle.

Finally, the OAW concept is attractive because of its overall theoretical performance. In

order to fully understand the concept, a wind-tunnel model was built and is currently being

tested at NASA Ames Research Center. The CFD calculations performed under this coop-

erative agreement helped to identify the problem of the flow separation (1992 Annual

Report), and also aided the design by optimizing the wing deflection for roll trim.

References

1. Cheung, S., Edwards, T., and Lawrence, S., "Application of CFD to Sonic Boom Near

and Mid Flow-Field Prediction," J. of Aircraft, Vol. 29, No. 5, 1992.

2. Cheung, S., "Sonic Boom Softening of Reference-H," High Speed Research: Sonic

Boom, NASA Langley, June 1994. (NASA CP will be published for limited distribu-

tion).

Supel_onic Civil Airplane Study and Design August 4, 1994 5

Appendix A

PVM Manual

Appendix A August 4, 1994 6

PVM Version 3.2

Manual of PVM

Samson Cheung

Merritt Smith

Local console

Table of Contents

1

2

3

4

5

6

P reface .. 1

Introduction

Software Package .. 2

Definitions .. 2

Structure of PVM .. 3

Directory Setup .. 3

Programming Concepts

Master and Slaves ... 4

Single Program-Multiple Data (SPMD) 6

PVM Daemon

Console Commands .. 10

Console Usage .. 11

PVM Library

Process Control ... 12

Dynamic Configuration... 13

Message Buffers.. 13

Packing and Unpacking 13

Sending and Receiving .. 14

Tutorial

Golden Section .. 16

Serial Program... 17

PVM Master Guideline/Master Program 18

PVM Slave Guideline/Slave Program 22

Compilation and Running..................................... 24

Makefile 25

7 Problems and Tips

Problems ... 26

Host File .. 27

8 Appendix

ARCH Names .. 29

Error Codes ... 30

ii

Preface

This manual serves as a supplementary document for the official refer-

ence manual of a relatively new research software, PVM, which has been

developed at Oak Ridge National Laboratory. A beginner, who has no

previous experience with PVM, would find this manual useful.

We would like to thank you in advance that if you find any problems in

PVM or this manual, please contact one of us.

Mr. Merritt Smith

NASA Ames Research Center, MS 258-1

Moffett Field, CA 94035
e-mail: mhsmith@nas.nasa.gov

phone: (415) 604-4462

Dr. Samson Cheung

MCAT Institute
NASA Ames Research Center, MS 258-1
Moffett Field, CA 94035

e-mall: cheung@nas.nasa.gov
phone: (415) 604-4462

INTRODUCTION

1 INTR OD UCTION

This manual provides you with an introduction to PVM and provides the

fundamentals necessary to write FORTRAN programs in the PVM envi-

ronment through a tutorial sample. This manual is designed for those

who have no previous experience with PVM. However, you should know

basic FORTRAN programming and UNIX. If you are ready for an

advanced PVM application, please consult the official PVM Reference
Manual.

Software

Package

PVM stands for Parallel V'trtual Machine. It is a software package that

allows a heterogeneous network of parallel and serial computers to

appear as a single concurrent computational resource. PVM allows you

to link up all or some of the computational systems on which you have

accounts, to work as a single distributed-memory (parallel) machine. We
call this a Virtual Machine.

PVM is useful for the following reasons. Unlike large mainframe com-

puters or vector supercomputers, workstations spend most of the time

idle. The idle time on a workstation represents a significant computa-

tional resource. PVM links these workstations up to become a powerful

multi-processor computational machine. With PVM, the lack of super-

computer resources should not be an obstacle to number crunching com-

putational programs. Furthermore, the annual maintenance costs of a

vector supercomputer is often sufficient to purchase the equivalent com-

puting resource in the form of workstation CPU's.

Definitions Here are some terms we use throughout this document:

Virtual Machine PVM links different user-defined computers together

to perform as one large distributed-memory computer.

We call this computer the Virtual Machine.

Host Individual computer (member) in the virtual machine.

Process Individual program operating on different computers
or hosts.

Processor The processing unit in computers. A virtual machine

can be viewed as a multi-processor computer.

INTRODUCTION

Task

Tid

Console

The unit of computation handled by the virtual

machine. You may want to think of one processor han-

dling one task.

Task identification number which is a unique number

used by the daemon and other tasks.

A program from which you can directly interact with

the virtual machine. (Add hosts, kill processes)

Structure of

PVM

The PVM software is composed of two parts. The first part is a daemon.

We call itpvmd. This is the control center of the virtual machine. It is

responsible for starting processes, establishing links between processes,

passing messages, and many other activities in PVM. Since the daemon

runs in the background, you have to use PVM console to directly interact

with the virtual machine.

The second part of the system is a library of PVM interface routines

located in J_ibpvn,3. a. This library contains user callable routines for

message passing, spawning processes, coordinating tasks, and modifying

your machine. In writing your application, you will need to call the rou-

tines in this library.

Directory

Setup

This setup is for NAS system. Before you use PVM, you need to set up

the following directories on all the machines that you want PVM to link:

• Make a directory $HOME/pvm3/bin/ARCH inallthe hosts of the virtual

machine.

Note ARCH is used throughout this manual to represent the archi-

tecture name that PVM uses for a given computer. The table

in the Appendix lists all the ARCH names that PVM sup-

ports. For example, for Silicon Graphic IRIS workstations,

you should make a directory $HOME/pvm3/bin/SGI.

• Make a directory $HOME/pvm3/include, and copy the file fp,,m3, h

from/usr/nas/pkg/pvrn3.2/include. (if yOU ale on different sys-

tem from NAS, please consult your system consultant.)

• Make a directory $HOME/pvm3/codes, and write your application

programs in this directory. You can actually put your programs any-

where you like as long as the correct "include" files are includes.

The current setup is for clarity.

Programming Concept

2

Master and
Slaves

Programming Concept

Unlike graphical software or a word-processor, you cannot see PVM

working by clicking your mouse buttons. In fact, a virtual machine is

quite an abstract concept because you don't physically have a multi-

processor machine! In this chapter, you will learn a simple concept,

which will help you to visualize how PVM works.

A common way to work with PVM is a Master�Slave relationship. A

Master process starts Slave routines and distributes work. However, a

Master does not actively participate in the computation. A Master

process most often resides on the originating host (user's computer),

while the Slave programs are distributed to the hosts of the virtual
machine.

You need to distribute executables of Slave programs to the directory

$HOblE/pvm3/bin/ARCH on every host. You can locate this Master pro-

gram anywhere you like.

Since the Master program spawns Slave programs on each of the

hosts to do jobs, it is important to understand the communication

(message passing) amoung the hosts in PVM.

Typically, a Master and a Slave have the following logic:

Master Slave

1 Enroll itself to PVM 1 Enroll itself to PVM

2 Spawn slave processes 2 Receive message from master

3 Initialize buffer, pack, and send 3 ...do something usefuL..

message to all slaves. 4 Initialize buffer, pack, and send

4 ...wait for slaves tofinislt., message to master

5 Receive message from slave(s) 5 Exit PVM

6 Exit PVM

The figure on the opposite page graphically describes a Master/Slave

relationship and shows the exchange of information.

4
ORI_NAL PAQE fB

OF PO0 qcucn,y

Programming Concept

FIGURE 1. Communication in Master�Slave programs.

Enroll to PVM

Spawn slaves

Initialize,
message to all slaves

Receive messa

Exit PVM

MASTER

(

Enroll to PVM

_eceive message

...Work!...Work!...
WorkI...Work!...

Initialize, pack_ and
message to master

_ Exit PVM

SLAVE

5

Programming Concept

SPM]) Another common way to work with PVM is the SPMD, Single Program

Multiple Data model. There is only a single program, and there is no

Master program directing the computation. The user starts the first copy

of the program and using the routine pvrafparent (), this copy can deter-

mine that it was not spawned by PVM, and thus must be the first copy

(parent). It then spawns multiple copies (children) of itself and passes

them the array of rids. At this point each copy is equal and can work on

its partition of the data in collaboration with the other processes.

Typically, a SPMD program has the following logic:

1. Enroll in pvm

2. If I am the first copy (parent)

a) Spawn child processes

b) Initialize buffer, pack, and send message out

3. If I am a secondary copy (child)

Receive messages

4. Work!...Work!...WorkI

5. Exit PVM

The program on the opposite page describes a SPMD logic and shows the

exchange of information. Please spend some time to study the program.

In the next chapter we will introduce the PVM daemon and the funda-

mentals of message passing.

6

Programming Concept

SPMD

Program

C ..

c SPMD Fortran example using PVM 3.0

C ..

program spmd

include '../include/fpvm3.h'

PARAMETER(NPROC=4)

integer mytid, me, i

integer tids(0:NPROC)

I

2

3

4

5

/_ _ Enroll in pvmcall pvmfmytid(mytid)

C ...

c Find out if I am parent or child

C ...

call pvmfparent(tids(0))

if(tids(O) .it. 0) then

rids(0) = mytid

me = 0

C

c start up copies of myself

C

call pvmfspawn('spmd',PVMDEFAULT,'*',

* NPROC-l,tids(1), info)

C

c multicast tids array to children

C

call pvmfinitsend(PVMDEFAULT, info)

call pvmfpack(INTEGER4, tids, NPROC, i, info)

call pvmfmcast(NPROC-I, tids(1), 0, info)

else

C

c receive the tids array and set me

C

call pvmfrecv(tids(0), 0, info)

call pvmfunpack(INTEGER4, tids, NPROC, l,info)

do 30 i=l, NPROC-I

if(mytid .eq. tids(i)) me = i

30 continue

endif

C ..

c all NPROC tasks are equal now

c and can address each other by tids(0) thru tids(NPROC-l)

c for each process me => process number [0-(NPROC-I)]

C _

print*,'me =',me, ' mytid =',mytid

_ call dowork(me, tids, NPROC)

C

c program finished exit pvm

C

-- call pvmfexit(info)

stop

end

7

Programming Concept

No_s

I

8

Programming Concept

subroutine dowork(me, tids, nproc)

include '../include/fpvm3.h'

C ...

c Simple subroutine to pass a token around a ring

C ...

integer me, nproc

integer tids(0:nproe)

integer token, dest, count, stride, msgtag

count = 1

stride - 1

msgtag - 4

if(me .eq. 0) then

token = tids(0)

call pvmfinitsend(PVMDEFAULT, info)

call pvmfpack(INTEGER4,token,eount,stride,info)

call pvmfsend(rids(me+l), msgtag, info)

call pvmfrecv(tids(nproc-l), msgtag, info)

print*, 'token ring done'

else

call pvmfrecv(tids(me-l), msgtag, info)

call pvmfunpack(INTEGER4,token,count,stride,info)

call pvmfinitsend(PVMDEFAULT, info)

call pvmfpaek(INTEGER4,token,count,stride,info)

dest - tids(me+l)

if(me .eq. nproe-i) dest = tids(0)

call pvmfsend(dest, msgtag, info)

endif

return

end

PVM Daemon

3 PVM Daemon

The PVM daemon is the control center of the virtual machine. You can

activate the PVM daemon by starting the PVM console or by invoking

the daemon directly with a list of hosts. The latter will be discussed in

chapter 6. To start the console, enter p,,m at UNIX prompt on your local

machine. The PVM console prints the prompt

pvrn>

and accepts commands from standard inpuL The console allows interac-

tive adding and deleting of hosts to the virtual machine as well as interac-

tive starting and killing of PVM processes. Even if the daemon is started

directly, the console can be used to modify the virtual machine.

Console

Commands

Here are the commands available in the PVM console:

ADD

ALIAS

CONF

DELETE

ECHO

HALT

HELP

ID

JOBS

KILL

MSTAT

PS

PSTAT

QUIT

RESET

SETENV

SIG

SPAWN

UNALIAS

VERSION

add other computers (hosts) to PVM

define and list command aliases you set

show members in virtual machine

remove hosts from pvm

echo arguments

stop all pvm processes and exit deamon

print this information

print console task identity

display list of running jobs

temlinate tasks

show status of hosts

list tasks

show status of tasks

exit PVM console, but PVM daemon is still activated

kill all tasks

display or set UNIX environment variables

send signal to task

spawn task

remove alias commands you previous set

show PVM version

10

PVM Daemon

Console

Usage

Suppose the console is running on workstation win210. This computer

will automatically be a host in your virtual machine. Here are some

examples of using PVM console:

lo

t,

e

,

So

HOST

win210

amelia

fred

Delete amelia

Activate PVM console

win210> pvm

Add amelia and fred to your virtual machine

pyre> add amelia

1 successful

HOST DTID

amelia c0000

pvm> add fred

1 successful

HOST DTID

fred 100000

Check the configuration of your virtual machine

pvm> conf

3 host, 1 data format

DTID ARCH SPEED

40000 SGI i000

c0000 SGI i000

100000 SGI i000

pyre, delete amelia

1 successful

HOST STATUS

amelia deleted

Exit PVM console, but PVM daemon is still running

pvm> quit

pvmd still running

win210>

II

PVM Library

4 PVM Library

This chapter introduces the PVM library. In writing your application pro-

grams, you need to call the subroutines in the library to instruct PVM to

control processes, send information, pack/unpack data, and send/receive

messages. Many subroutines have pre-defined option values for some

arguments. These are defined in the include file fp,,-m3, h and are listed in

the Appendix.

Process

Control

call pvmfmylid(lid)

This routine enrolls this process with the PVM daemon on its first call, and generates a
unique tid. You call this routine at the beginning of your program.

call pvmfexit(into)

This routine tells the local PVM daemon that this process is leaving PVM. You call this
routine at the end of your program.Values of into less than zero indicate an error.

call pvmIkm(rid, info)

This routine kills a PVM task identified by Ud.Values of _to less than zero indicate an
error.

?

call pvmfspawn(pname, flag, where, ntask,tids, numt)

This routine starts up nt_k instances of a single process named _ on the virtual
machine. Here are the definition of the other arguments:

where

Uds

numt

Note

Option Value

PVMDEFAULT (0)

PVMHOST (1)

PVMARCH (2)

PVMDEBUG (4)

PVMTRACE (8)

Meaning

PVM can choose any machine to start task

where specifies a particular host

where specifies a type of architecture

start up processes under debugger

processeswill gmerate PVM tracedata

is where you want to start the PVM process. If aq is 0, w_ is ignored.

contains identification numbers of PVM processes started by this routine.

indicates how many processors started; negative values indicate an error.

You should always check nds and _ to make sure all pro-

cesses started correctly.

12

PVM Library

call pvnd'parent (rid)

This routine returns the Udof the process that spawned this task. If the calling process
was not created with pvmtspawn,then tid=PvraNoParent.

Dynamic

Configuration

call pvmfaddhost(host, info)

call pvmfdelhost(host, info)

These routines add and delete hosts to the virtual machine respectively. Values of lnfo
less than zero indicate an error.

Note Both routines are expensive operations that require the syn-
chronization of the virtual machine.

Message
Buffers

call pvmfinilsend(encoding, build)

This routine clears the send buffer, and creates a new one for packing a new message.

_neoding

(_ This is not implemented PVMRAW (1)
in PVM v3.2. __ PVMINPLACE (2)

Encoding Value Meaning

PVMDEFAULT(0) XDR _coding if virtual machineconfig-
urationis heterogeneous

no encoding is done. Messagesare sentin
their original format.

data left in place. Buffer only contains
sizes and pointers to the sent items.

contains the message buffer identifier. Values less than zero indicate an error.bu_d

call pvndt'reebuf(build, info)

This routine disposes the buffer with identifier b,,m. You use it after a message has been
sent, and is no longer needed. Values of into less than zero indicate an error.

Packing and

Unpacking

call pvmfpack(what, xp, nitem, stride, info)

call pvmfunpack(what, xp, nitem, stride, info)

These routines pack/unpack your message xp, which can be a number or a string. You
can call these routines multiple times to pack/unpack a single message. Thus a message
can contain several arrays, each with a different data type.

13

PVM Library

? Note

what

nitcm

stride

info

There is no limit to the complexity of the packed messages,

but you must unpack them exactly as they were packed.

indicates what type of data xp is

STRING (0)

BY'IEI (1)

n'CrEGER2 (2)

INTEGER4 O)

REAL (4)

COMPLEX8 (5)

REAL8 (6)

COMPLEX16 (7)

is number of items in the pack/unpack. If xp is a vector of 5, ,,item is 5.

is the stride to use when packing.

is status code returned by this routine. Values less than zero indicate an error.

Sending and

Receiving

call pvmfsend(rid, msgtag, info)

This routine labels the message with an integer identifier msgtag, and sends it immedi-
ately to the process Ud. Values of into less than zero indicate an error.

call pvmfmcast(ntask, tids, msgtag, info)

This routine labels the message with an integer identifier,,,,gtag, and broadcasts the mes-

sage to all nt_k number of tasks specified in the integer array u_. Values of into less than
zero indicate an error.

call pvmfrecv(tid, msgtag, build)

This routine blocks the flow of your program until a message with label msgtag has

arrived from ha. A value of -1 in msgt_ or ud matches anything (wildcard). This routine

creates a new active receive buffer, and puts the message in it. Values of btflld identify
the newly created buffer; values less than zero indicate an error.

call pvmfnrecv(rid, msgtag, build)

This routine performs in the same way as pvnffr¢cv, except that it does not block the flow

of your program. If the requested message has not arrived, this routine returns bund=O.

This routine can be called multiple times for the same message to check if it has arrived,

while performing useful work between calls. When no more useful work can be per-

formed, the blocking receive _mtrt-ev can be used for the same message.

call pvmfprobe(rid, msgtag, build)

This routine checks if a message has arrived; however, it does not receive the message.
If the requested message has not arrived, this routine returns buaa--0. This routine can

14

PVM Library

be called multiple times for the same message to check if it has arrived, while perform-

ing useful work between calls.

call pvmfbufinfo (build, bytes, msgtag, tid, info)

This routine returns information about the message in the buffer identified by bund. The

information returned is the actual msgtag, source _, and message length in bye. Values

of lnfo less than zero indicate an error.

15

Tutorial

5

Golden

Section

Tutorial

This chapter shows you how PVM may be applied to your application

programs through a simple example. The example chosen is the Golden

Section rule for finding the maximum of a function. You may remember

it from Math class in high school. Let us review the method and the algo-
rithm.

Suppose we want to find the maximum of a curve y=f(x); where x is

between the interval a_ and a2. The points a3 and a4 are symmetrically

placed in this interval, so that

a3 = (l-a) al + t_ a2 (EQ1)

a4= a a_ + (l--ix) a2 (EQ 2)

See Figure 1 at left. Golden Section rule requires a to be 0.382.

Y

al a3 an a2

Figure 1. Interval division for
Golden Section

The algorithm of finding the maximum is as follow:

if f(a4)< f(a3)
1 Consider new interval (al,a4)

2 Apply EQ.(I) and (2) again

3 Until maximum is reached

If f(a4) > f(a3)

1 Consider new interval (a3,a2)

2 Apply EQ. (1) and (2) again

3 Until maximum is reached

If f(aa)=f(a4), the maximum is found

The FORTRAN program (Serial Program) on the opposite page is the

Golden Section rule that a programmer would write on a normal serial

computer. Please spend a few minutes to study the flow of the program.

This simple program consists of two parts, the main (calling) program

and the function subroutine. The latter has only four lines.

Note Notice that for each interval (a_,a2), we need to call the

function evaluation four times to find f(at), f(a2), f(a3), and

f(a4).

16

Tutorial

Serial

Program

Golden Section rule _tP.-
C

C

10

C

C

Equations (1) and (2)_

999

Function evaluation -_

Linear optimization:

Search for maximum of a x-y curve.

DIMENSION A(4),FN(4)

Initial interval

L = 0

TOL- I.E-3

A(1) - 0.4

A(2) - 1.6

ALPHA - 0.382

CONTINUE

Loop begins:

L - L + 1

A(3) = (I.-ALPHA)*A(1) + ALPHA*A(2)

A(4) ALPHA*A(1) + (I.-ALPHA)*A(2)

FN(1) = FCA(1))

FN(2) = FCA(2))

FNC3) = F(A(3))

FN(4) = F(A(4))

WRITE(10,*) 'A

WRITE(10,*) 'F

WRITE(10,*) ' '

' ,A(1) ,A(2) ,A(3) ,A(4)

', FN (i), FN(2), FN(3), FN (4)

ERR = ABS(FN(2)-FN(3))

IF(ERR.LE.TOL) GOTO 999

Four function evaluations

IF(FN(4) .GT. FN(3)) THEN

B1 = A(3) 1

JB2 - A(2)

A(1) = B1

A(2) = B2

GOTO i0

ELSEIF(FN(4) .LT. FN(3)) THEN

B1 - A(1) 7

JB2 - A(4)
A(1) - B1

A(2) = B2

GOTO i0

ENDIF

CONTINUE

STOP

END

FUNCTION F(X)

F = TAN_{(X)/(I.+X*X)

RETURN

END

If f(a4) > f(a3)

If f(a4) < f(a3)

17

Tutorial

PVM Master
Guideline

Recall that in the procedure of finding a new interval, the program calls

the function evaluation four times serially to get f(al), f(a2), f(a3), and

f(a4). We would like to assign four processors to perform the four func-

tion evaluations simultaneously on the virtual machine. Therefore, we

modify the Serial Program by writing the main (calling) program as a

Master program, and the function subroutine as a Slave program.

The following steps are general guidelines to writing a Master program.

Please study the steps, and compare them with the program on the oppo-

site page. Also compare it with the Serial Program.

lo Include fpvm3.h

Include this file in your program, you are able to use the PVM

preset variables; such as PVUDV.eAULT, RVAL4,and more, men-

tioned in Chapter 4 and the Appendix.

2, Enroll Master to PVM

Use pvmfmytid(mytid) to enroll.

, Assign virtual processors

Use the following call to spawn nproc function processes.
pvm fs pawn (pname, PVMDFAULT, where, nproc, tids, numt)

Also tellPVM the name of the Slave program (pname).PVM

returnstids,the identifierof the nproc processors.

. Initiafize buffer and pack data

Use pvmfinitsend toclearbuffer.

Use thefollowingroutinetopack a realarray^ of dimension m.

pvmfpack (REAL4 ,A,m, i, info)

5_ Send message

Use the following call to send the packed message to the Slave

process identified by rids.
pvm fm cast (nproc, tids, msgtag, in fo)

18

Tutorial

Master

Program

C Linear optimization:

C Search for maximum of a x-y curve.

PROGRAM MASTER

C

C

__/ include '../include/fpvm3.h'DIMENSION A(4),FN(4)

integer tids(0:32),who

character*8 where

character*12 pname

2

3

c

20

C

C

C

i0

c

C

C

Enroll this program in PVM

call pvmfmytid(mytid)

Start up the four processors

nproc - 4

where = '*'

pname = 'function'

call pvmfspawn(pname,PVMDFAULT,where,nproc,tids,numt)

do 20 i=0,nproc-i

write(*,*) 'tid', i, tids(i)

continue

Initial interval

L = 0

A(1) = 0.4

A(2) = 1.6

ALPHA = 0.382

TOL = I.E-3

ERR = i.

CONTINUE

Loop begins:

L=L+I

Assign four processors

Slave program's name

4=-uati0ns(1)and(2) ''l--_ A(3) = (I.-ALPHA)*A(1) + ALPHA*A(2)
A(4) ALPHA*A(1) + (I.-ALPHA)*A(2)

4
Pack nproc, tids, A,
and ERR

5

msgtype value matches the one
received in Slave program

c

c Broadcast data to all node programs

c first pack them, then send them

call _vmfinitsend(PVMDEFAULT,info)

call pvmfpack(INTEGER4,nproc,l,l,info)

call pvmfpack(INTEGER4,tids,nproc, l,info)

call pvmfpack(REAL4,A,4,l,info)

call pvmfpack(REAL4,ERR, l,l,info)

c

c

msgtype = 1

call pvmfmcast(nproc,tids,msgtype,info)

c

19

Tutorial

o Wait until messages come from Slaves

Use pvmfrecv() to block until Slaves return function values.

Make sure value of msgtype matches values coming from Slaves.

, Receive and Unpack data

The sequence of unpacking is the same as the packing in the
Slave.

1 Exit PVM

Use pvmfex±t(info) to exit PVM.

2O

Tutorial

6 c Wait for results from processors

msgtype value matches the ,__

o_e sent from Slave progr___

Receive/unpack FN and 'who' [
from the 4 processors one by one "---- lOO

C

C

8

c

c

999

msgtype - 2

do i00 ial,nproc

call pvmfrecv(-l,msgtype,info)

call pvmfunpack(INTEGER4,who,l,l,info)

call pvmfunpack(REAL4,FN(who),l,l,info)

continue

WRITE(10,*) 'A ',A(1),A(2),A(3),A(4)

WRITE(10,*) 'F ',FN(1),FN(2),FN(3),FN(4)

WRITE(10,*) ' '

ERR = ABS(FN(2)-FN(3))

IF(ERR.LE.TOL) GOTO 999

IF(FN(4) .GT. FN(3)) THEN

B1 = A(3)

B2 = A(2)

A(1) = B1

A(2) = B2

GOTO i0

ELSEIF(FN(4) .LT. FN(3)) THEN

B1 = A(1)

B2 = A(4)

A(1) = B1

A(2) = B2

GOTO i0

ENDIF

Program finished leave PVM before exiting

continue

call pvmfexit(info)

STOP

END

21

Tutorial

PVM Slave

Guideline

The Slave program is basically the function evaluation program. In order

to do the function evaluation, it needs information from Master. For

example, it needs the identity numbers (tits (1) Uds (4)) that PVM

assigns, and the values of a_ ,a4.

The following steps are general guidelines to writing a Slave program.

Please study the steps, and compare them with the program on the oppo-

site page. Also try to find the connection with the Master Program. You

may find Figure 1 helpful.

. Include fpvm3.h

Include this file in your program, you are able to use the PVM

preset variable names; such as pVMDVVAur.r, REAL4, and more,

mentioned in all tables in Chapter 4 and the Appendix.

, Enroll Slave with PVM

Use pvmfmytid (mytid) to enroll.

1 Identify the parent ofthls process

Use the following call to obtain the task identifyer (ratio) of par-

ent process. This is useful for retuming solutions to the Master.
pvmfparent (mtid)

1 Receive and Unpack data

Make sure the value of msgtyr,e matches the one from Master. The

sequence of unpacking is the same as the packing in Master.

5. Perform function evaluation

o Initialize buffer and pack data

Use pvmf in itsend toclearbuffer.

Use thefollowingcalltopack a realarrayF of dimension n.

pvmfpack (REAL4 ,F, n, i, in fo)

7o Send data

Use the following call to send the packed message to Master.
pvmfsend (mtid, msgtag, info)

So Exit PVM

Use pvmfexit(info) to exit PVM.

22

Tutorial

Slave

Program

1

2

3

4

Unpack the same way as
Master sends

C

..- 3

C

C

5

6

7

Go to 3-'_d wait for
another call from master

5

Function
evaluation c

C

Packfand c

processor'who'c

8

C

C

99

program function

include '../include/fpvm3.h'

integer tids(0:32),who

real a(32)

tor = l.e-3

Enroll this program in PVM

call pvmfmytid(mytid)

Get the parent's task id

call pvmfparent(mtid)

continue

Receive data from host

I msgtype = 1

call pvmfrecv(mtid,msgtype,info)

call pvmfunpack(INTEGER4,nproc,l,l,info)

call pvmfunpack(INTEGER4,tids,nproc, l,info)

call pvmfunpack(REAL4,A,4,l,info)

call pvmfunpack(REAL4,ERR,l,l, info)

if(err.le.tor) go to 99

Determine which processor I am

do 5 i=0,nproc-i

if(tids(i).eq.mytid) me = i

continue

who = me + 1

Calculate the function
X = A(who)

f = TANH(X)/(I.+X*X)

E Send the result to Master

call pvmfinitsend(PVMDEFAULT,info)

call pvmfpack(INTEGER4,who,l,l,info)

call pvmfpack(REAL4,f,l,l,info)

msgtype = 2

call pvmfsend(mtid,msgtype,info)

go to 3

Program finished. Leave PVM before exiting

continue

call pvmfexit(info)

stop

end

23

Tutodal

Compilation

and Running

?

After you finish your program, it is time to compile and run. Follow the

steps below to compile your programs.

1. Make sure you have the correct directory setup

Follow the advice from Directory Setup in Chapter 1.

Compile the program

Use the sample Makefile on the opposite page to compile your

programs.

Note The Makefile _[Iksthe PVM library, libfpvm3.a.

m

1

1

So

1

Copy executables to all the hosts

Follow the advice from Directory Setup in Chapter 1, and distrib-

ute the executables to $HOME/p_n3_Din/ARCH.

Activate PVM

Activate PVM by entering pv_ at UNIX prompt.

Decide the configuration of the virtual machine

Add or delete hosts to the virtual machine. (Chapter 3)

Quit PVM console

Leave PVM console (don't halt daemon) by entering quit at the

p_ prompt.

24

Tutorial

Makefile

PVM Library

#

Custom section

Set PVM_ARCH to your architecture type (SUN4, HP9K, RS6K, # SGI,

etc.)

if PVM_ARCH = BSD386 then set ARCHLIB t -irpe

i if PVM_ARCH = SGI then set ARCHLIB = -isun

if PVM_ARCH = I860 then set ARCHLIB = -irpc -isocket

if PVM_ARCH - IPSC2 then set ARCHLIB - -irpc -isocket

otherwise leave ARCHLIB blank

#

PVM_ARCH and ARCHLIB are set for you if you use 'aimk'

#

PVM_ARCH - SGI

ARCHLIB = -isun

END of custom section - leave this line here

#

PVMDIR =

PVMLIB =

SDIR =

Make appropriate changes/ BDIRXDIR

for your own path

CFLAGS =

LIBS =

/amd/fsO2/pub/iris4d_irix4/nas/pkg/pvm3.2

$(PVMDIR)/Iib/$(PVM_ARCH)/Iibpvm3.a

/u/wk/cheung/pvm3/bin

$(BDIR)/$(PVM_ARCH)

-g -I../include

$(PVMLIB) $(ARCHLIB)

F77 =

FFLAGS =

FLIBS =

f77

-g

$(PVMDIR)/Iib/$(PVM_ARCH)/Iibfpvm3.a $(LIBS)

default: master function

$(XDIR):

mkdir $(BDIR)

mkdir $(XDIR)

clean:

rm -f *.o bfgs quadfunct

master: $(SDIR)/master.f $(XDIR)

$(F77) $(FFLAGS) -o master $(SDIR)/master.f $(FLIBS)

mv master $(XDIR)

function: $(SDIR)/function.f $(XDIR)

$(F77) $(FFLAGS) -o function $(SDIR)/function.f $(FLIBS)

my function $(XDIR)

25

Problems and Tips

6 Problems and Tips

PVM is a relatively new piece of software. It is not advanced enough to

warn you ahead of time before problems come. Here are a couple of

cases that you may encounter as a beginner.

Problems

?

Can't activate PVM

• If the message you get, after entering p,,-mat UNIX prompt, is
libpvm [pld-l]: Console: Can't start pvmd,

itispossiblethatthelasttime you haltedPVM daemon, thedaemon

created a residual file /tmp/pvrad .xxxx; where xxxx is an unique

number for you. Delete this file, and start PVM again.

• If the daemon is running but the PVM console will not start,

it is possible that you have too many processes running. You have

to kill all the processes before you re-activate PVM console.

Note Use ps -el I username at UNIX prompt to locate your run-

ning processes.

J

Can't add hosts

It is possible that there are no links between your local computer and the

other hosts. Check the following two things:

• Make sure each of your hosts has a. rhosts file in the $ HoMedirec-

tory, and this file points to your local computer.

• Make sure the. rhosts file is"read" and "write" protected from oth-

ers users.

26

Problems and Tips

Host

File

You can create the following file to build the virtual machine without

activating the PVM console. The addresses must be recognizable by your

system.

computerl.address ']

computer2, address _ host file
computer 3. address

computer4, address

? Note

Note

Note

The first machine listed must be the initiating host.

If tasks are to be spawned on specfic systems, the system

name contained in where (routine p_,_p,,,,-) must match the

name in the host file exactl X.

If spawning tasks are on the initiating host, use the truncated

host name. For example, if the full address is

win210.nas.nasa.gov ;

use win210 instead. This is a bug in PVM v3.2.

Having the host file ready, enter the following at UNIX prompt,

win210> pvmd3 host

27

Problems and Tips

No s

Place to jot down problems.

If encounter problems, please contact:

Merritt Smith: mhsmith@nas.nasa.gov

or

Samson Cheung: cheung@nas.nasa.gov

28

Appendix

Appendix

TABLE 1. ARCH names used in PVM.

ARCH Machine

AFX8 Alliant FX 8

ALPHA DEC Alpha

BAL Sequent Balance

BFLY BBN Butterfly TC2000

BSD386 80386/486 Unix box

CM2 Thanking Machines CM2

CM5 Thanking Machines CM5

CNVX Convex C-series

CNVXN Convex C-series

CRAY C-90, YMP, Cray-2

CRAYSMP Cray S-MP

DGAV Data General Aviion

HP300 I-IP-9000 model 300

HPPA HP-9000 PA-RISC

I860 lntel iPSC/860

IPSC2 lntel iPSC/860 host

KSR1 Koadall Square KSR-I

NEXT NeXT

PGON Inl_l Paragon

PMAX DECstation 3100,5100

RS6K IBM/RS6000

RT IBMRT

SGI Silieoa Graphics IRIS

SUN3 Stm 3

SUN4 Stm 4, SPARCstation

SYMM Sequent Symmetry

TrFN Staed_t Titan

UVAX DEC Micro VAX

Note

DEC OSF- 1

DYNIX

BSDI

Sun front-end

native mode

UNICOS

HPUX

link-lprc

SysV

OSF-1

link -lprc

Ultrix

AIX

link -lsun

SunOS

29

Appendix

TABLE 2. Error codes returned by PVM routines

Error Code

PvmOK(0)

PvmBadParam (-2)

PvmMismatch (-3)

PvmNoData (-5)

PvmNoHost (-6)

PvmNoFile (-7)

PvmNoMem (-I0)

PvmBadMsg (-12)

PvmSysErr (-14)

PvmNoBu f (- 15)

PvmNoSuchBuf (- 16)

PvmNukkGroup (-17)

PvmDupGroup (-18)

PvmNoGroup (-19)

PvmNotInGroup (-20)

PvmNolust (-21)

PvmHostFail (-22)

PvmNoParent (-23)

PvmNolmpl (-24)

PvmDSysErr (-25)

PvmBadVersion (-26)

PvmOutOfRes (-27)

PvmDupHost (-28)

PvmCantStart (-29)

PvmAlready (-30)

PvmNoTask (-31)

PvmNoEntry (-32)

PvmDupEntry (-33)

Meaning

All right

Bad parameter

Barrier c_mt mismatch

Read past end of buffer

No such host

No such executable

Can't get memory

Can't decode received massage

Pvmd not responding

No current buffer

Bad message identifyer

Null group name is illegal

Already in group

No group with lhat name

Not in group

No such instance in group

Host failed

No parent task

Function not implemented

Pvmd system error

Pvmd-pvmd protocol mismatch

Out of resources

Host already e_figurated

Fail to execute new slave pvmd

Slave pvmd already nmning

Task does not exist

No such (group,instance)

(Group, instance) already exists

3O

